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On the dimension of a part of the Mandelbrot set 
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Enschede, The Netherlands 
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Abstract. We investigate one-parameter analytic maps from the complex plane onto itself. 
We approximate the set of parameter values for the stable periodic orbits, which arise due 
to subsequent bifurcation from the period-1 orbit, with the aid of normal forms. This 
approximated set consists of a cactus of touching circles, whose sizes obey a very simple 
scaling law. From this scaling law the Hausdorff dimension D of the boundary of this 
approximate set is computed analytically, giving D = 1.2393 . . . . Numerical experiments, 
determining the dimension of the equivalent part of the Mandelbrot set, are consistent 
with this number. Moreoter, this number seems to be independent of the precise form of 
the map, as predicted by the same analysis. 

1. Introduction 

Consider an analytic nonlinear map from the complex plane onto itself 

x ‘ =  C x + f ( x ) =  C x + a 2 x ” a a , x 3 + .  . .= H ( x )  (1.1) 

where C is a variable complex parameter for which we wish to examine the behaviour 
of the map, a, are general complex parameters, which may depend on C. This map 
has a period-1 fixed point at the origin, which is stable for C values within the circle 
IC1 = 1 [l] .  

From this fixed point periodic orbits bifurcate at C values given by 

C d p l q )  = e x p ( 2 ~ i p / q ) .  (1.2) 

In the following we will write CO for the sake of brevity. In (1.2) p and q are two 
natural numbers which specify the type of orbit: q denotes the period of the orbit; its 
winding number is p /  q. One can assume that 0 < p < q ;  furthermore p and q must be 
relatively prime. A periodic orbit of this kind is called a p / q  orbit. The stability of a 
p / q  orbit is determined by the derivative of the map, iterated q times: 

where xA are the p/q-orbit points. This orbit is stable if 

The problem is to find (approximate) expressions for the regions in C-space, where 
(1.4) is fulfilled. In section 2 we tackle this problem by normal form techniques. The 
results in this section show that these stability regions are again circles and that the 
sizes of these regions are independent of the parameters a k .  The set of the stability 
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regions corresponding to orbits which emanate due to subsequent bifurcations from 
the point-1 orbit will be called Mandelbrotchen. By inductive reasoning we arrive at  
an  approximate description of a Mandelbrotchen. In section 3 we compute the 
Hausdorff dimension of the boundary of this approximate Mandelbrotchen. This will 
be the main result of this paper. It should be noted that as a Mandelbrotchen is only 
a part of the full Mandelbrot set, this number is less than the conjectured D = 2  for 
the full set. In sections 4 and 5 we describe numerical algorithms and  results for the 
equivalent part of the Mandelbrot set (and related sets). As the results compared with 
the experiment are beyond expectation, an appendix is devoted to a conjecture on 
normal forms, which could be the cause of this good agreement. 

2. Stability regions 

We consider an  arbitrary analytic map (1.1) of the complex plane onto itself. It has 
a fixed point at the origin, with a stability region in the complex C plane given by a 
circle: IC1 < 1. In the first part of this section we study the stability regions of periodic 
orbits, directly bifurcating from this period-1 fixed point. In the second part we 
generalise this result. 

For the derivative DH, of the map H Y  ( H  iterated q times) of a p / q  orbit xk 
( k =  1 . .  . q ) ,  we have 

(1.3) 

The region of stability is given by 

IDH,1<1. ( 1 . 4 )  
We want to expand D H ,  for C values close to the bifurcation point CO (see (1.2)) for 
given values for p and q. So we let 

( 2 . 1 ~ )  

( 2 . l b )  

Our expansion parameter is given by 1961; this choice will be justified at the end of 
this section. Here we restrict ourselves to the leading order in this parameter; in the 
appendix we make a comment on the next leading order. 

We take the following steps. 
(A)  First, observe that as a diffeomorphism leaves the eigenvalues of D H ,  invariant, 

we can allow such coordinate transformations. Let 

then the map  ( 1 . 1 )  becomes 

As we are interested in the map around its bifurcation point CO, we can find h such 
that, according to Poincare [ 2 ] ,  the map is in its normal form: for period p / q  we can 
transform ( 1.1 ) into 

= Cyk(1 +ay;1+O(y?))  ( 2 . 4 )  
in which a and  b are functions of all the parameters C and ak,  k = 2 , 3 , .  . . in (1.1). 
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(B)  Next we define 

m = 1 , 2 ,  . . .  
k = l  

(2.5) 

where yk are the plq-orbit points of the map in normal coordinates. Note that the 
variables s, ( m  = 1 , 2 , .  . . )  are not independent; e.g. s,, with m > q, can be expressed 
algebraically in terms of s,, with n s q. 

Lemma. For any given set ( y I , .  . . , yq) the averages s, ( m  > q )  are functions of 
s,, . . . , sq.  

~ m = w f n ( ~ l , . . ~ , ~ q )  V m > q  (2.6) 

where w, is polynomial in each variable sl, . . , sq. 

Prooj Observe 

= exp( - k = I  n = l  z n y ; / n )  = exp( - , = I  2 z " c n / n ) .  (2.7) 

(1) The left-hand side of (2.7) is a polynomial of degree q in z. 
(2) The term proportional to z"' of the right-hand side of (2.7) is linear in s, and 

contains only s, with n s m. Combining ( 1 )  and (2),  one easily proves the lemma by 
induction. 0 

(C)  Finally we derive a set of equations for the set s,. By adding both sides of 
(2.4) for k = 1 . . . q we get (using ) I ~ + ~  = y k )  

S ~ = C ( S ~ + U S ~ + ~ + ~ ~ ~ ~ + ~ + . .  . ) .  ( 2 . 8 )  
By adding both sides of (2.4) squared, for k = 1 . . . q, we get 

s2 = C'( s2 + 2asq+* + (26  + az ) s2q ,2  + . . . ). (2.9) 
Proceeding in this way by adding both sides of (2.4) raised to the power m, for 
k = 1 . . . q, we arrive at 

s m  = C m S m  + dm,q-rmsy+m + dm,q+>msy-:m +. . . for all m. (2.10) 

The coefficients d,, are (in principle) computable coefficients. 
As we work here only in first order in 6, one can easily give the solution of the set 

of equations (2.10). First of all, observe that due to the lemma (see (2.6)),  all sk with 
k >  q vanish in first order in 6. So (2.10) reduces to a set of q equations: 

(2.11) 

because s, is at least linear in 6. Equation (2.11) very easily yields within the same 
approximation order: 

s, = C,S, + HOT = C ~ S ,  + HOT' m s q  

s, = 0 if m # q, s, arbitrary. (2.12) 

The value of sq can be determined by observing 

- C ( 1 + ay  2 + by f '' + . . . ) Y k + l  

Y k  

-- (2.13) 
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and by multiplying all left-hand sides and all right-hand sides of this equation for all 
orbit points we get, after some algebra, 

qs +0(6”). (2.14) sY= -- C,a 

For the derivative we obtain in an analogous way 

So the boundary of the stability region of a period p / q  orbit bifurcating from the 
origin, using (1.4), can be calculated from 

DH, 1 - c-’ 0 4 ’8 = elT with O < T S ~ T .  (2.16) 

Equation (2.16) represents a circle which touches the original one at an angle 27rp/q 
with the real axis and its radius is q-’. Note that (2.16) is satisfied and that indeed 
sk is negligible for k f q. 

In order to generalise this result we make two observations: firstly, the stability 
region of this newly formed periodic orbit is again a circle; secondly, our result holds 
for all maps of the form (1.1). Hence it also holds for the same map, iterated q times. 
Inductively we can repeat the whole argument for any periodic orbit of type 
( p /  q ) * ( p ’ /  4‘) bifurcating from any p /  q periodic orbit which is a fixed point under the 
iteration of H q times. For a schematic sketch see figure 1. 

Period I 

Figure 1. Schematic sketch of the approximation of a Mandelbrotchen. A period p / q  
bifurcates at the point C = CO in the complex parameter plane. The angle between O C  
and OA is (I = 2 n p / q .  This procedure is repeated with as a new reference the stability 
region of this new p,’q orbit (O+O’, C+C’, A=$A‘=C) :  a period orbit of type 
i p / q ) * ( p ’ / q ’ )  bifurcates. The new angle between O’C’ and O‘A‘ is a ’ = 2 n p ’ / q ’ .  

This scaling was observed [3] and explained [4] before; the latter, however, was 
treated in a completely different way as done here. 

In the next section we will determine the dimension of the boundary of this set. In 
sections 4 and 5 we will compare this with experiments on the genuine Mandelbrot set. 
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3. The dimension of the boundary of an approximate Mandelbrotchen 

In  the preceding section we observed that from a periodic orbit of map (1.1) a 
denumerable set of new periodic orbits bifurcate, which can be labelled by a rational 
number p / q ;  the stability region of this new orbit was found to be a circle of radius 
q-* times the radius of the original circle. As this result (within this approximation) 
was independent of the map, we could inductively repeat this argument for these new 
orbits. These facts determine the Hausdorff dimension of the boundary of this approxi- 
mate set. 

We begin by noting that the length of this boundary diverges. Consider all bifurcat- 
ing orbits from a period-1 orbit. Let its stability region be a circle with radius R. Then 
there exist exactly 4(q)  birurcating orbits, with a period q > 1 ;  4(q )  is the possible 
number of p values and  hence equals the number of integers, which are relatively 
prime to q. So 4 ( q )  is the Euler function [ 5 ] .  The length of this part of the boundary 
is given by 

Since [5] 

(3.2) 

where 5 is the Riemann function, the sum in (3.2) diverges for d equal to 2 ,  and hence 
L in (3.1) diverges. 

For self-similar sets it is relatively easy to determine the Hausdorff dimension. The 
procedure for computing the dimension is as follows [6]. 

Introduce a set of similarity transformations uq ( q  = 2 , 3 , 4 .  . ) which involve multi- 
plication with rq (here q - 2 )  and have multiplicity pq (here d ( q ) ) .  From self-similarity 
we can deduce, following [6], that the Hausdorff dimension D must satisfy 

Solving this numerically yields for D :  

D =  1.2393.. . . (3.4) 

This is the basic result of this paper. It will be compared with experiments on the 
dimension of the equivalent part of the Mandelbrot set and related sets. 

4. Numerical evaluation of the dimension 

The significance of the fact that the dimension of a boundary is larger than 1, is the 
following. Suppose that we know the shape of the boundary up to a very high precision. 
If we take a standard step length 77 ( q < <  1 )  with which we measure the length and  
plot the logarithm of this length L( 7 7 )  as a function of In( T), we should find a straight 
line. The slope of this line is straightforwardly related to the dimension. 

Any numerical experiment has the following drawbacks. 
(1) The shape of the boundary is only known up  to a finite precision. In our 

experiment we walk along the boundary with a finite step length A << 7. As the first 
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reference point we take the starting point. As soon as the Euclidean distance between 
the actual point reached and  the reference point exceeds 77, we add  this distance to 
L ( 7 )  and take this new point as a new reference. 

( 2 )  Due to transient behaviour close to the boundary, escape times can get very 
long. In fact, by taking a finite number of iterations M, in order to decide whether a 
point is part of the Mandelbrot set, the set seems to get bigger than it really is. 

(3) Everything is being computed with a finite number of digits. 
Extending the arguments of [7], we can estimate the errors due  to finite A and  

transient behaviour. In order to make them of the same order of magnitude, we can 
argue that M should roughly be A - ' .  

The actual effect of transients on the measured dimension compared with the 
genuine dimension, however, is hard to quantify. Qualitatively we can say that the 
boundary gets bigger (e.g. one will hit the atennae [ l ] )  but more importantly it will 
become more vague and  hence the measured dimension will be lower than the actual 
one. At the same time, for very high M the number of digits with which we calculate 
will influence the results as well. The boundary gets more random and the measured 
dimension is too high. The net result of these competing errors is not known. In any 
case, we expect to find for low M a value which is lower than the genuine dimension, 
since in that case the second error is negligible. 

The program was written on a personal computer in order to lower the costs, and 
we implemented the map in assembler-8087t. 

The algorithm used is extremely simple. Suppose we have two points in parameter 
space Cold and c,,, .  Assume that 

( i )  they are at one step (distance A )  from each other; 
( i i )  they both lie outside the Mandelbrot set; 
( i i i )  they both are within one step from the boundary of the set. 

Now take a step with fixed length A from cnewr first to the left, then forward, then to 
the right, and  eventually backward, relative to the direction cneW - cold: the first point 
(not part of the set) which one encounters, becomes cneW (and c,,, becomes Cold) (see 
figure 2 ) .  By induction we will find a new pair (Cold,  c,,,) which satisfies our three 
assumptions. So if have two proper initial parameter values, satisfying (i), (ii) and  
(iii), the algorithm finds a path along the boundary. 

I . .  . I 

Figure 2. Schematic view of a path along a part of the boundary. The stable set is depicted 
in grey. White dots indicate misses, black dots a re  hits. c,,, and  cOid of the last step are  
shown. From c,,,, go to  the left ( L ) ,  which in this case is a miss because the stable region 
is hit; then proceed in the forward direction (F) and  note that now it is a hit because the 
point is not a n  element of the stable region. Lines with arrows show the actual path.  

I thank Henk d e  Leeuw for assembling a n d  inventing this program. 
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One can convince oneself that this algorithm is ‘cusp’ proof: it penetrates a cusp 
but can never get stuck in it (it just turns around); nor can the algorithm get into a loop. 

5. Numerical results 

We measured the length L ( 7 )  for length scales 7 varying from about 10 up to 1000 
times A for some values for M .  We used the map 

x ’ = A + x Z  (5.1) 

which can be transformed into (1.1) in a straightforward manner. In our experiments 
we varied M from 2” up to 216. In this way we looked at the systematic errors described 
in the previous section. We took A fixed: (in units of A of map (5.1)). We plotted 
In( L )  against In( 7 )  and indeed found approximate straight lines. 

Table 1 displays the values for the measured dimension as a function of M. 
Observe that as a function of M ,  the measurements tend to larger predictions for 

0, which is consistent with our expectation. The best value for D seems to the one 
at maximal M :  D = 1.239*0.001. This is in good agreement with the prediction made 
in the previous section. We would like to stress, however, that a reliable error estimate 
is terribly difficult. As already mentioned, the error given above is only the statistical 
one. Due to non-statistical fluctuations (‘lacunarities’) we should be more pessimistic 
on the total error: D = 1.24 * 0.01 seems to more realistic in view of the results in the 
table. 

Table 1. Measured dimensions (D=statistical error) as a function of maximal number of 
iterations M. D is computed with least square fits. 

M D Error 

2 048 1.221 0.002 
4 096 1.220 0.002 
8 192 1.223 0.002 

16 384 1.233 0.002 
32 768 1.240 0.001 
65 536 1.239 0.001 

A further comment which can be made is the following. In our derivation in § 3, 
we chose r4 to be q-*, with q the period. Inspection of the Mandelbrot set suggests, 
however, this factor to be somewhat larger (since rS’Z4.669, and we also found 
r;’ = 10.03, r;’  = 26, r;’ = 50; compare [4]). In order to estimate the sensitivity of the 
dimension on r4, we compute the dimension when the large-period behaviour of rq is 
( q 2 +  l)-’ .  We then have 

x I 

1 = c /q:= c ( q 2 +  1 ) r D 4 ( q h  
4 = 2  4 = l  

Solving this equation numerically yields 

(5.3) 

D = 1.226.. . . (5.3) 
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Compared with our numerical result D = 1.24, our estimate (3.4) is somewhat better 
than (5.3), which suggests that for large periods the scaling is indeed q-2  rather than 
( q 2 +  l ) - ’ .  Of course a better numerical experiment would be of great value; execution 
time would be huge, however. 

We conclude by noting that (less exact) estimates on the dimension of the boundary 
for maps with a cubic or quartic term added to the R H S  of (S.l), all give consistent 
values with D =  1.24+0.01. 

6. Conclusions 

We considered analytic maps from the complex plane onto itself. We investigated the 
stability regions of periodic orbits which arise due to subsequent bifurcations from 
some basic periodic orbit ( a  Mandelbrotchen). The resulting approximate set of this 
part of the Mandelbrot and related sets consists of circles with well prescribed sizes 
and positions. The results d o  not depend on the explicit form of the map. The resulting 
estimate on the Hausdorff dimension of the boundary of this part of the Mandelbrot 
set is D = 1.2393.. . , which is in agreement with the best numerical value D = 
1.24*0.01. Numerical studies on different maps show that, within the numerical errors, 
this dimension is independent of the map. 
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Appendix 

We wish to extend our computation of section 2 to the next leading order. Our starting 
point is the map in normal form: 

yh + 1 = Cy, ( 1 + ay! + by;‘ + O( J’:q ) ). (2.4) 
We defined 

s,, = 2 y ;  
k = l  

(2.5) 

c = CO+ 6 1q6)<< 1. (2.1) 
It was shown that, to first order in 6, the variables s, ( m  # q )  vanish. To second order 
one can easily show that the s, vanish, unless m equals 9 or 2q. The relation between 
sq and s2q is derived from (2.7). The term proportional to z2’ in the right-hand side 
of (2.7) should vanish, leading to 

s2y = S t /  q, 
We need to know sy up to order 6’. Observe that 

, vh+ l  

J J  h 
-- - C ( l + a y ; t + b y t Y + . . . ) .  (2.13) 
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By multiplying all left-hand sides and all right-hand sides of this equation for all orbit 
points, we get 

('42) 

) 
Y 

= C 4  l + a  y g + b  y iq+aa '  c y z y ;  + H O T  

= C q ( l + a s , + b s z , + a ' ( s ~ - s , , ) / 2 ) + ~ ~ ~ .  

( k = l  k = l  k # n  

Together with ( A l )  it follows that 

U S , = - ~ S C ; ' + ~ ( ~ -  b / a 2 ) S 2 C ; ' + 0 ( 8 ' ) .  (A31 

Similar to (A2) we have 

DH, = C q ( l + a ( q + l ) s , +  b(2q+1)s2,+a ' (q+l) ' (s~-s , , ) /2)+O(S3) (A41 

DN, = 1 - q ? S C o ' + l / 2 q ' 6 S ' C o 2 ( q ' - q + 2 b / ~ ~ ) + 0 ( 6 3 ) .  (A5) 

or with (A3) 

As the results of the estimate in section 2 on the dimension of a Mandelbrotchen led 
to a surprisingly good result, we conjecture that the leading-order term in q 4  should 
vanish for large q: such a term would indeed drastically change this prediction. Hence 
we are led to 

A suggestive plot (and no more than that) is shown in figure 3. We used the simplest 
mapping in the class of (1.1) (parameter values a2 = 1 and ak = 0 for k > 2) and computed 
the normal forms up to q = 20. We plotted the (in general complex) values of q-'ba-' 
in figure 3. These values tend to a small half-circle around - 4  as q increases. From 

0 201 I I I 

I 

0 1 0  - 

-0 1 0 f  

-0 20; 
-060 - 0 5 0  -0 40 -030 - 0 2 0  

Figure 3. Plot of q-'ba -' for the map x '  = Cx + x2,  with a and h the first t w o  terms in the 
normal form expansion (2 .4 ) .  Note that as 9 increases its value tend to the point - 4 ,  as 
conjectured in (A6).  
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the data it is hard to conclude whether the point -4 will be reached or not. A final 
note, supporting our conjecture, is that this figure is rather insensitive for the map 
chosen: only points for low q values differ recognisably if the map is changed. 
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